Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park.

Identifieur interne : 001E52 ( Main/Exploration ); précédent : 001E51; suivant : 001E53

Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park.

Auteurs : Tatiana A. Vishnivetskaya [États-Unis] ; Scott D. Hamilton-Brehm ; Mircea Podar ; Jennifer J. Mosher ; Anthony V. Palumbo ; Tommy J. Phelps ; Martin Keller ; James G. Elkins

Source :

RBID : pubmed:25319238

Descripteurs français

English descriptors

Abstract

The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this study, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversity in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55-85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.

DOI: 10.1007/s00248-014-0500-8
PubMed: 25319238


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park.</title>
<author>
<name sortKey="Vishnivetskaya, Tatiana A" sort="Vishnivetskaya, Tatiana A" uniqKey="Vishnivetskaya T" first="Tatiana A" last="Vishnivetskaya">Tatiana A. Vishnivetskaya</name>
<affiliation wicri:level="1">
<nlm:affiliation>BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831</wicri:regionArea>
<wicri:noRegion>37831</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hamilton Brehm, Scott D" sort="Hamilton Brehm, Scott D" uniqKey="Hamilton Brehm S" first="Scott D" last="Hamilton-Brehm">Scott D. Hamilton-Brehm</name>
</author>
<author>
<name sortKey="Podar, Mircea" sort="Podar, Mircea" uniqKey="Podar M" first="Mircea" last="Podar">Mircea Podar</name>
</author>
<author>
<name sortKey="Mosher, Jennifer J" sort="Mosher, Jennifer J" uniqKey="Mosher J" first="Jennifer J" last="Mosher">Jennifer J. Mosher</name>
</author>
<author>
<name sortKey="Palumbo, Anthony V" sort="Palumbo, Anthony V" uniqKey="Palumbo A" first="Anthony V" last="Palumbo">Anthony V. Palumbo</name>
</author>
<author>
<name sortKey="Phelps, Tommy J" sort="Phelps, Tommy J" uniqKey="Phelps T" first="Tommy J" last="Phelps">Tommy J. Phelps</name>
</author>
<author>
<name sortKey="Keller, Martin" sort="Keller, Martin" uniqKey="Keller M" first="Martin" last="Keller">Martin Keller</name>
</author>
<author>
<name sortKey="Elkins, James G" sort="Elkins, James G" uniqKey="Elkins J" first="James G" last="Elkins">James G. Elkins</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25319238</idno>
<idno type="pmid">25319238</idno>
<idno type="doi">10.1007/s00248-014-0500-8</idno>
<idno type="wicri:Area/Main/Corpus">001F61</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F61</idno>
<idno type="wicri:Area/Main/Curation">001F61</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F61</idno>
<idno type="wicri:Area/Main/Exploration">001F61</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park.</title>
<author>
<name sortKey="Vishnivetskaya, Tatiana A" sort="Vishnivetskaya, Tatiana A" uniqKey="Vishnivetskaya T" first="Tatiana A" last="Vishnivetskaya">Tatiana A. Vishnivetskaya</name>
<affiliation wicri:level="1">
<nlm:affiliation>BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831</wicri:regionArea>
<wicri:noRegion>37831</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hamilton Brehm, Scott D" sort="Hamilton Brehm, Scott D" uniqKey="Hamilton Brehm S" first="Scott D" last="Hamilton-Brehm">Scott D. Hamilton-Brehm</name>
</author>
<author>
<name sortKey="Podar, Mircea" sort="Podar, Mircea" uniqKey="Podar M" first="Mircea" last="Podar">Mircea Podar</name>
</author>
<author>
<name sortKey="Mosher, Jennifer J" sort="Mosher, Jennifer J" uniqKey="Mosher J" first="Jennifer J" last="Mosher">Jennifer J. Mosher</name>
</author>
<author>
<name sortKey="Palumbo, Anthony V" sort="Palumbo, Anthony V" uniqKey="Palumbo A" first="Anthony V" last="Palumbo">Anthony V. Palumbo</name>
</author>
<author>
<name sortKey="Phelps, Tommy J" sort="Phelps, Tommy J" uniqKey="Phelps T" first="Tommy J" last="Phelps">Tommy J. Phelps</name>
</author>
<author>
<name sortKey="Keller, Martin" sort="Keller, Martin" uniqKey="Keller M" first="Martin" last="Keller">Martin Keller</name>
</author>
<author>
<name sortKey="Elkins, James G" sort="Elkins, James G" uniqKey="Elkins J" first="James G" last="Elkins">James G. Elkins</name>
</author>
</analytic>
<series>
<title level="j">Microbial ecology</title>
<idno type="eISSN">1432-184X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Archaea (classification)</term>
<term>Archaea (genetics)</term>
<term>Archaea (isolation & purification)</term>
<term>Bacteria (classification)</term>
<term>Bacteria (genetics)</term>
<term>Bacteria (isolation & purification)</term>
<term>Biofuels (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Cellulose (chemistry)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>DNA, Archaeal (genetics)</term>
<term>DNA, Bacterial (genetics)</term>
<term>Hot Springs (microbiology)</term>
<term>Hot Temperature (MeSH)</term>
<term>Lignin (chemistry)</term>
<term>Molecular Weight (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Phylogeography (MeSH)</term>
<term>Populus (chemistry)</term>
<term>Populus (microbiology)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Wyoming (MeSH)</term>
<term>Xylans (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN bactérien (génétique)</term>
<term>ADN des archées (génétique)</term>
<term>ARN ribosomique 16S (génétique)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Archéobactéries (classification)</term>
<term>Archéobactéries (génétique)</term>
<term>Archéobactéries (isolement et purification)</term>
<term>Bactéries (classification)</term>
<term>Bactéries (génétique)</term>
<term>Bactéries (isolement et purification)</term>
<term>Biocarburants (MeSH)</term>
<term>Biomasse (MeSH)</term>
<term>Cellulose (composition chimique)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Lignine (composition chimique)</term>
<term>Masse moléculaire (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phylogéographie (MeSH)</term>
<term>Populus (composition chimique)</term>
<term>Populus (microbiologie)</term>
<term>Sources thermales (microbiologie)</term>
<term>Température élevée (MeSH)</term>
<term>Wyoming (MeSH)</term>
<term>Xylanes (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cellulose</term>
<term>Lignin</term>
<term>Xylans</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Archaeal</term>
<term>DNA, Bacterial</term>
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Biofuels</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Wyoming</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Archaea</term>
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Archéobactéries</term>
<term>Bactéries</term>
<term>Cellulose</term>
<term>Lignine</term>
<term>Populus</term>
<term>Xylanes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Archaea</term>
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN bactérien</term>
<term>ADN des archées</term>
<term>ARN ribosomique 16S</term>
<term>Archéobactéries</term>
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Archaea</term>
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Archéobactéries</term>
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
<term>Sources thermales</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Hot Springs</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Cloning, Molecular</term>
<term>Hot Temperature</term>
<term>Molecular Weight</term>
<term>Phylogeny</term>
<term>Phylogeography</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Biocarburants</term>
<term>Biomasse</term>
<term>Clonage moléculaire</term>
<term>Masse moléculaire</term>
<term>Phylogenèse</term>
<term>Phylogéographie</term>
<term>Température élevée</term>
<term>Wyoming</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this study, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversity in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55-85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25319238</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-184X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>69</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Microbial ecology</Title>
<ISOAbbreviation>Microb Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park.</ArticleTitle>
<Pagination>
<MedlinePgn>333-45</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00248-014-0500-8</ELocationID>
<Abstract>
<AbstractText>The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this study, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversity in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55-85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vishnivetskaya</LastName>
<ForeName>Tatiana A</ForeName>
<Initials>TA</Initials>
<AffiliationInfo>
<Affiliation>BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hamilton-Brehm</LastName>
<ForeName>Scott D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Podar</LastName>
<ForeName>Mircea</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mosher</LastName>
<ForeName>Jennifer J</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Palumbo</LastName>
<ForeName>Anthony V</ForeName>
<Initials>AV</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Phelps</LastName>
<ForeName>Tommy J</ForeName>
<Initials>TJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Keller</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Elkins</LastName>
<ForeName>James G</ForeName>
<Initials>JG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microb Ecol</MedlineTA>
<NlmUniqueID>7500663</NlmUniqueID>
<ISSNLinking>0095-3628</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056804">Biofuels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019641">DNA, Archaeal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014990">Xylans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11132-73-3</RegistryNumber>
<NameOfSubstance UI="C036909">lignocellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001105" MajorTopicYN="N">Archaea</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056804" MajorTopicYN="N">Biofuels</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="Y">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019641" MajorTopicYN="N">DNA, Archaeal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045482" MajorTopicYN="N">Hot Springs</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="Y">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058974" MajorTopicYN="N">Phylogeography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014959" MajorTopicYN="N" Type="Geographic">Wyoming</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014990" MajorTopicYN="N">Xylans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25319238</ArticleId>
<ArticleId IdType="doi">10.1007/s00248-014-0500-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Biotechnol. 2009 Jul;27(7):398-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19481826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2010 Nov;60(4):784-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20725722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Feb;102(3):3155-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21075617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2011 Dec 2;10(12):5302-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol. 1974 May;27(5):985-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4598231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Feb;76(4):1014-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20023107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(11):e48289</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23144861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Apr;68(4):1735-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11916691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1948-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19181843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2011 Nov;61(Pt 11):2697-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21169457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Sep;88(1):199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20552355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Jan 21;5(1):e8812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20098679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1609-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7510403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Jan;180(2):366-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9440526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Apr;7(4):718-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23235293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(1):R10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17224063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Oct;77(19):7000-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21841025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Nov 06;480(7377):368-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22056985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Mar;21(3):494-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21212162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Jun 03;6(1):85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23731756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Extremophiles. 2013 Mar;17 (2):251-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23345010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2012 Dec;14(12):3069-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22497633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2010 Sep;60(Pt 9):2011-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Jun;57(6):1675-1682</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006 Aug 07;7:371</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16893466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e36740</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22629327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13769-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18779592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2011 Sep;108(9):2088-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21520015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2012 Jun;23(3):396-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22176748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Sep 19;9:386</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18803844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19004872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Mar 15;26(6):715-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20130030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Feb 28;6(1):31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23448304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2008 Jun;19(3):210-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18524567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Dec;71(12):8228-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2009 Jan;59(Pt 1):95-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19126731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2009 Dec;5(12):e1000593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20011103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e59927</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23555835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1970 Mar;48(3):443-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5420325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):8102-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18535141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:165-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2004 Jun;5(2):150-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15260895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Aug;194(15):4015-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22636774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jul;75(14):4762-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2013 Apr 22;8:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23607440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2555-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15671178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Aug;90(2):259-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12197524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jan 28;331(6016):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21273488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Aug 20;4(8):e6669</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19693277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 22;450(7169):560-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18033299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jun;77(12):4042-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21498747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(24):7718-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19820143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Elkins, James G" sort="Elkins, James G" uniqKey="Elkins J" first="James G" last="Elkins">James G. Elkins</name>
<name sortKey="Hamilton Brehm, Scott D" sort="Hamilton Brehm, Scott D" uniqKey="Hamilton Brehm S" first="Scott D" last="Hamilton-Brehm">Scott D. Hamilton-Brehm</name>
<name sortKey="Keller, Martin" sort="Keller, Martin" uniqKey="Keller M" first="Martin" last="Keller">Martin Keller</name>
<name sortKey="Mosher, Jennifer J" sort="Mosher, Jennifer J" uniqKey="Mosher J" first="Jennifer J" last="Mosher">Jennifer J. Mosher</name>
<name sortKey="Palumbo, Anthony V" sort="Palumbo, Anthony V" uniqKey="Palumbo A" first="Anthony V" last="Palumbo">Anthony V. Palumbo</name>
<name sortKey="Phelps, Tommy J" sort="Phelps, Tommy J" uniqKey="Phelps T" first="Tommy J" last="Phelps">Tommy J. Phelps</name>
<name sortKey="Podar, Mircea" sort="Podar, Mircea" uniqKey="Podar M" first="Mircea" last="Podar">Mircea Podar</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Vishnivetskaya, Tatiana A" sort="Vishnivetskaya, Tatiana A" uniqKey="Vishnivetskaya T" first="Tatiana A" last="Vishnivetskaya">Tatiana A. Vishnivetskaya</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E52 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E52 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25319238
   |texte=   Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25319238" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020